
A-M Systems Model 4000 Communication Protocol	5
[bookmark: _Toc107119845]

Model 4000
X-Channel Extracellular Differential AC Amplifier

Matlab Source Code

Version 0.1

[bookmark: _Toc376267177]Table of Contents
Table of Contents	1
Standard Instruments	2
USB Configuration	3
Customized Instruments	3
Instrument Messages	4
AMS_RESPONSE_ERROR	4
AMS_SLAVE_RESONSE	4
AMS_MSG_READ_FIRMWARE_VERSION	4
AMS_MSG_READ_HARDWARE_CONFIG	5
AMS_MSG_READ_INSTRUMENT_NAME	5
AMS_MSG_READ_BOX_AMOUNT	5
AMS_MSG_READ_SERIAL_NUMBER	5
AMS_MSG_READ_FLASH_BLOCK	7
AMS_MSG_LOAD_FLASH_BLOCK	7
AMS_MSG_SAVE_FLASH_BLOCK	8
AMS_MSG_WRITE_CHANNEL_VALUES	9
{hardware config block}	10
{channel config block}	10
{config value}	11
Revision History	12

Model 4000 Matlab Class

The Matlab Class to interface with A-M Systems Model 4000 is AMS4k.m. It relies on one other Class of enumerations Verbs.m. Both of these files .m files need to be in the current folder, or on the MATLAB path.

Verbs.m
This file contains one list of enumerations for the action codes required to communicate with the instrument

AMS4kExamples.m
This file lists several examples of how to use the Model 4000 Class (AMS4k.m). It covers basic instatiation followed by viewing and changing the settings on the instrument.

AMS4k.m
This is the class that contains the properties and methods necessary to communicate with the instrument. Instrument communication is simplified by the class methods, and is explained in detail in the Instrument Messaging section. Communication is done over the a virtual serial port created by the usb device in the instrument. The usb drivers need to be installed properly for the class to be used. Current drivers can be downloaded from FTDI’s websites:
http://www.ftdichip.com/FTDrivers.htm.
Properties
There are two main properties. Channels and Globals. When the AMS4k object is instantiated these properties are set by reading the last saved values on the instrument.

Channels:
The Channels property holds the settings for each individual channel.
Settings are shown below for standard settings or can be read from the Hardware Configuration Block for custom instruments.

Channels is a 32x6 matrix with the following collums:
[Ch# Stat HP Notch LP Gain]

Valid values are:
Ch# 	= 	1 to 32
Stat 	= 	0 (off), 1 (on)
HP 	= 	0 to 7. 0=lowest frequncy, 7=highest frequency
Standard values: 0.3Hz 1Hz 3Hz 10Hz 30Hz 100Hz 300Hz 500Hz
Notch 	=	0 (Off), 1 (on)
LP 	=	0 to 7. 0=lowest frequncy, 7=highest frequency
	Standard vals: 100Hz 300Hz 500Hz 1kHz 3kHz 5kHz 10kHz 20kHz
Gain 	= 	0 to 7 0=lowest gain, 7=highest gain
Standard values: 1 2 5 10 20 50 100 200

EXAMPLE: 	display(Amp1.Channels)
display(Amp1.Channels(1,3))
Amp1.Channels=[1 0 2 1 6 4];
Amp1.Channels(1,2:3)=[0 2];
Amp1.Channels(1,6)=3;
Amp1.Channels(5:7,2:3)=[0 2;0 2;0 2];
Globals:
The Globals property are the settings that are the same for all channels. Settings are shown below for standard settings or read from the Hardware Configuration Block for custom instruments.

Globals is a 1x2 vector with the following collums:
[Line Ref]

Valid values are:
Line 		= 	0 (60Hz), 1 (50Hz)
RefSource 	= 	0 (GND), 1 (Bus)

EXAMPLE: 	AMS1.Globals =[0 1];
or AMS1.Globals(1)=0;

Methods
Constructor:
obj = AMS4k(amsPort) creates a handle to an
	instance of the AMS4k Class. The instance is set to be
	associated with the Instrument that is paired with the com port
	defined in the input amsPort.
INPUT: amsPort - string value defining the numeric value of the desired Com Port

OUTPUT: obj - handle to the instance of the AMS4k Class

EXAMPLE: AMS1= AMS4k('COM7');

TryConnect: Connects to the Instrument

SYNOPSIS: TryConnect () establishes a serial connection between the instrument and computer using the com port defined in the ComPort property of the object. It will update the objects PortSuccess property.

EXAMPLE: AMS1.TryConnect;

ReadFlashBlock: Reads a saved setting set from the instrument.

SYNOPSIS: Returns channel settings for one of the eight flash blocks.
	chandata=ReadFlashBlock(obj,block)

INPUT: block - a number from 0 to 7 representing one of the complete instrument settings saved on the instrument.

OUTPUT: chandata - 2D array of channel settings

EXAMPLE: channels = AMS1.ReadFlashBlock(2);
See also LoadFlashBlock, SaveFlashBlock

LoadFlashBlock: Make a saved setting set active.

SYNOPSIS: Applies a saved settings to the active instrument controls.
	success=LoadFlashBlock(obj,block)

INPUT: block - a number from 0 to 7 representing one of the complete instrument settings saved on the instrument.

OUTPUT success - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

EXAMPLE: AMS1.LoadFlashBlock(2);
See also ReadFlashBlock, SaveFlashBlock

SaveFlashBlock: Takes data and saves it into a flash slot.

SYNOPSIS: Takes active settings and saves in to a flash slot identified by the number n and the string 'name'.
	success=SaveFlashBlock(obj,block,cdata,gdata)

INPUT: block - a number from 1 to 5 representing one of the five complete instrument settings saved on the instrument.
cdata - channel data in a 32x6 matrix format
gdata - global data in 1x2 matrix format

OUTPUT success - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

EXAMPLE: AMS1.LoadFlashBlock(2);
[bookmark: _GoBack]See also ReadFlashBlock, LoadFlashBlock

Instrument Messaging
STANDARD INSTURMENT OVERVIEW
The Model 4000 MultiRecord consist of 32 independently controllable signal channels. Multiple models can be cascaded together and controlled by one model, up to 256 channels. For each channel, users can select via a PC to USB to UART:
Enable/disable the channel
1 of 8 high pass filter settings
Enable/disable a notch filter
If the notch filter frequency is at 50 or 60Hz.
1 of 8 low pass filter settings
1 of 8 gain settings.

Additionally the users can set or read the instrument name, and read the revision and serial number.

To set any settings, an ASCII message is sent from the PC to firmware in the following format:
MessageVerb MessageBytes (if applicable) MessageTerminator

The firmware will respond with:

 StartMessage MessageNumber Response_Verb Response_bytes EndMessage

The details of these messages is given the available message section.

For example the message for the PC to Read the Instrument Name would be in hexidecimal:
A6 7F		
Where A6 is the MessageVerb, and 7F is the MessageTerminator, No Message bytes were necessary for this command The Firmware would respond:
	81 01 A7 4D 75 6C 74 69 2D 52 65 63 6F 72 64 20 41 6D 70 2E 00 81
Where 81 is the StartMessage indicator and the EndMessage indicator,
	01 is the MessageNumber,
	A7 is the MessageVerb,
	4D 75 6C 74 69 2D 52 65 63 6F 72 64 20 41 6D 70 2E 00 is:
			“Multi-Record Amp.<NUL>” (ASCII converted)

(REV 3 NOTE: there is no need for the ASCII format in this instrument –PC communication can be however we want it. The rest of the commands are really binary anyway ---)
All numerical settings for Write Channel Values are sent in ASCII format, so a 0 would be 30hex. All settings except for channel number have values less than 8, so only one byte is used for these variables. Channel number may go up to 255, so two bytes are used for this setting: 00 to FF as the hexadecimal representation of 0 to 255. the high nibble goes first in ASCII format or 30h to 39h (0-9) and 41h to 46h(A-F), then the low nibble in ASCII format.

An example of this is the AMS_MSG_WRITE_CHANNEL_VALUES message:
If we want to set channel 47 on with the highpass filter to 100Hz, LineFrequency=60Hz,Notch=off,Reference=GND,low pass filter = 1kHz, and gain=50, then the following message would be sent:
	B5 32 46 30 35 30 30 30 33 35 7F
Where B5 is the MessageVerb, and 32 46 is the hex value 2F, or 47 decimal, 30 35 30 30 30 33 35 are the filter and gain settings, and 7F is the MessageTerminator. The firmware would respond with the message:
	81 02 C5 32 46 30 35 30 30 30 33 35 81
Where 81 is the StartMessage indicator and the EndMessage indicator,
	02 is the MessageNumber,
	C5 is the MessageVerb,
	32 46 30 35 30 30 30 33 35 is:
			“2 F 0 5 0 0 0 3 5” (ASCII converted)

CUSTOMIZED INSTRUMENTS
A-M Systems, Inc. offers customers the option of ordering a factory-customized instrument with Low Pass and High Pass filter options and Gain options of their choice. Additionally, these settings need not be common across all channels in the customized instrument. To accommodate effective remote control, each instrument is able to communicate its factory preset hardware configuration, allowing the client application to adjust its user interface to accurately represent the available options implemented in the hardware. The client application uses the AMS_MSG_READ_HARDWARE_CONFIG message to obtain this information from the instrument. Details of this message format can be located in the section titled Available Messages.

MESSAGES
All communication the Model 4000 uses Hex Coded communication. The communication includes a message verb defining the action to be performed, and any additional data needed for execution of the message. Responses from the instrument are delivered to the client application beginning with a matching response verb to indicate the action performed, followed by any additional data sent with the response message.

Note: Byte sequences enclosed in braces such as {hardware config bloc} are defined in detail at the end of this section. Unless otherwise noted, all strings are variable in length and consist of up to 18 ASCII characters (1 byte each) followed by a required NULL terminator.

[bookmark: _Toc376267182]AMS_RESPONSE_ERROR
If the Device receives a command it does not know it will send a Response as follows (again preceded by the StartMessage indicator, the MessageNumber and followed by the MessageTerminator)

Error Response Format (1 byte)	Length
Byte 0:	AMS_RESPONSE_ERROR (0xCD)	1

[bookmark: _Toc376267183]AMS_SLAVE_RESONSE
If the is in slave mode it will only respond with this message.

Error Response Format (1 byte)	Length
Byte 0:	AMS_RESPONSE_ERROR (0xCE)	1

[bookmark: _Toc376267184]AMS_MSG_READ_FIRMWARE_VERSION
Requests the build numbers for the internal processor firmware and the front panel LCD touch screen display firmware.
Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_READ_FIRMWARE_VERSION (0xA4)	1

Response Format (14 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_FIRMWARE_VERSION (0xA5)	1
Byte 1-13:	Firmware String (“YYYYMMDDHHMM”)	13

[bookmark: _Toc376267185]AMS_MSG_READ_HARDWARE_CONFIG
Requests the hardware configuration data, which fully describes any hardware customizations present in the instrument.
Message Format (1 byte)	Length
Byte 0:	AMS_MSG_READ_HARDWARE_CONFIG (0xAA)	1

Response Format (321 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_HARDWARE_CONFIG (0xAB)	1
Byte 1-319:	{hardware config block}	320

[bookmark: _Toc376267186]AMS_MSG_READ_INSTRUMENT_NAME
Requests the user assigned instrument name, useful for distinguishing multiple instruments being controlled by a single client application.
Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_READ_INSTRUMENT_NAME (0xA6)	1

Response Format (up to 20 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_INSTRUMENT_NAME (0xA7)	1
Byte 1:	Instrument Name (string)	up to 19

[bookmark: _Toc376267187]AMS_MSG_READ_BOX_AMOUNT
Requests the serial number of the instrument.
Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_READ_BOX_AMOUNT(0xA8)	1

Response Format (up to 10 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_BOX_AMOUNT(0xA9)	1
Byte 1:	Amount of Boxes (byte 0 to 8)	1

[bookmark: _Toc376267188]AMS_MSG_READ_SERIAL_NUMBER
Requests the serial number of the instrument.
Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_READ_SERIAL_NUMBER(0xA2)	1

Response Format (up to 10 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_SERIAL_NUMBER(0xA3)	1
Byte 1:	Serial Number (string – up to 8 characters)	up to 9
[bookmark: _Toc376267189]
AMS_MSG_READ_FLASH_BLOCK
Requests the binary array for all one of the 32 channel Sets. The first eight blocks are for the channels while the ninth block is for the global byte. Block number BoxNum(0 to 7)or 8 for global . If Block number is MessageTerminator (7F) then all 513 bytes are sent (32*2*8+1)

Data is arranged in 2 bytes per channel (highest byte value is 3F):
Bit	7	6	5	4	3	2	1	0
Ch Data 1st byte=	Empty	Empty	Notch	50Hz	HighP2	HighP1	HighP0	OFF
Ch Data 2nd byte=	Empty	Empty	Gain2	Gain1	Gain0	LowP2	LowP1	LowP0

 The last Block has one byte for the global bits
Bit	7	6	5	4	3	2	1	0
	Empty	Empty	Empty	Empty	NegBus	CalOn	CalGain1	CalGain0.

Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_READ_FLASH_ARRAY(0XB1)	1
Byte 1:	Block number	1

Response Format (up to 514 bytes)	Length
Byte 0:	AMS_RESPONSE_READ_FLASH_ARRAY (0xC1)	1
Byte 1-514 	DATA	up to 513

[bookmark: _Toc376267190]AMS_MSG_LOAD_FLASH_BLOCK
This will load one of the 32 channel Sets from the flash and set the filter and gain switches as specified by the flash variables. Block number is (0 to 7)or 8. If Block number is MessageTerminator (7F) then all channels are set.

Message Format (1 byte)	Length
Byte 0: 	AMS_MSG_LOAD_FLASH_ARRAY(0XB2)	1
Byte 1:	Block number	1

Response Format (1 byte)	Length
Byte 0:	AMS_RESPONSE_LOAD_FLASH_ARRAY (0xC2)	1

[bookmark: _Toc376267191]
AMS_MSG_SAVE_FLASH_BLOCK
The computer wants to save current data to flash. This will save one box (or block, or 32 channels) of data at a time. The first eight blocks are for the channels while the ninth block is for the global byte:
Bit	7	6	5	4	3	2	1	0
Ch Data 1st byte=	Empty	Empty	Notch	50Hz	HighP2	HighP1	HighP0	OFF
Ch Data 2nd byte=	Empty	Empty	Gain2	Gain1	Gain0	LowP2	LowP1	LowP0

Global bits
Bit	7	6	5	4	3	2	1	0
	Empty	Empty	Empty	Empty	NegBus	CalOn	CalGain1	CalGain0.

The format of the call will be B3 BoxNum(0 to 7)or 8 for global bit then the following 64 bytes will be the channel data
	EX: B3 05 42 00 42 00 42 00 ... 42 00 7F
	bytes: 0 1 2 3 4 5 6 7 64 65 66
this example would set the flash block for box 5

Message Format (66 bytes)	Length
Byte 0: 	AMS_MSG_SAVE_FLASH_BLOCK(0XB3)	1
Byte 1:	Block number	1
Byte 2-66	Channel Data	64

Response Format (3 or 66 bytes 3 bytes if global block (block 8))	Length
Byte 0:	AMS_RESPONSE_SAVE_FLASH_BLOCK (0xC3)	1
Byte 1:	Block number	1
Byte 2-66	Channel Data (or byte 2 is just the global byte)	64

[bookmark: _Toc376267192]AMS_MSG_WRITE_CHANNEL_VALUES
Modifies a single setting in the currently running program, data is sent in ASCII
Message Format (10 bytes)	Length
Byte 0: 	AMS_MSG_WRITE_CHANNEL_VALUES (0xB5)	1
Byte 1:	channel number high nibble (ASCII 0-F)	1
Byte 2:	channel number low nibble (ASCII 0-F)	1
Byte 3:	Off (0,1) {ASCII 30,31}	1
Byte 4:	High Pass (0,1,2,3,4,5,6,7)	1
Byte 5:	Line Frequency (0,1)	1
Byte 6:	Notch (0,1)	1
Byte 7:	Reference (0,1)	1
Byte 8:	Low Pass (0,1,2,3,4,5,6,7)	1
Byte 9:	Gain (0,1,2,3,4,5,6,7)	1

Response Format (10 bytes)	Length
Byte 0:	AMS_RESPONSE_WRITE_CHANNEL_VALUES (0xC5)	1
Byte 1:	channel number high nibble (ASCII 0-F)	1
Byte 2:	channel number low nibble (ASCII 0-F)	1
Byte 3:	Off (0,1)	1
Byte 4:	High Pass (0,1,2,3,4,5,6,7)	1
Byte 5:	Line Frequency (0,1)	1
Byte 6:	Notch (0,1)	1
Byte 7:	Reference (0,1)	1
Byte 8:	Low Pass (0,1,2,3,4,5,6,7)	1
Byte 9:	Gain (0,1,2,3,4,5,6,7)	1

The following chart lists the settings that correspond to the values transmitted in the channel data block under the standard production configuration of the hardware. Customized instruments may implement different settings for the data values. Detailed information regarding specific customized units can be obtained through the {hardware config block}. The High Pass and Low Pass Filters support 8 settings (data values 0 – 7) and the Gain supports either 11 or 13 settings (data values 0 – 10 or 0 – 12).
					
	Value	High Pass Setting	Low Pass Setting	Gain Setting	
	0	0.1 Hz	100 Hz	1		
	1	1 Hz	300 Hz	2	
	2	3 Hz	500 Hz	5	
	3	10 Hz	1 kHz	10	
	4	30 Hz	3 kHz	20	
	5	100 Hz	5 kHz	50	
	6	300 Hz	10 kHz	100	
7	500 Hz	20 kHz	200	

[bookmark: _Toc376267193]{hardware config block}
The hardware configuration block provides details regarding any hardware modifications made to the instrument. This information is sufficient to present a customized user interface that accurately represents the capabilities present in the hardware.
The current value for Layout Revision (Byte 0) is 0x01, which represents the data schema detailed in the following table. When a value of 0x00 is received for Configuration Code (Byte 1), the standard production values for Filter and Gain options should be used and the content of the remaining bytes in this message are undefined.
Hardware Config Block Format (320 bytes)	Length
Byte 0:	Layout Revision	1
Byte 1:	Configuration Code	1
		0 = standard production hardware
		1 = custom configuration

Byte 2-65:	Each channel can have one of 4 custom Settings	64
	Each byte has 8 bits, two bits for each channel
		0=Custom 0 1=Custom 1
		2=Custom 2 3=Custom 3
	 Byte: msb ## ## ## ## lsb
	 = channel n+3 n+2 n+1 n
	so byte 2 would have channel 0, 1, 2, and 3’s custom setting

Byte 66-119	Reserved	54
Byte 120:	{config value} Calibration Gain Setting 0	2
Byte 122:	{config value} Calibration Gain Setting 1	2
Byte 124:	{config value} Calibration Gain Setting 2	2
Byte 126:	{config value} Calibration Gain Setting 3	2
Byte 128-175 	{channel config block} for Custom 0	48
Byte 176-223	{channel config block} for Custom 1	48
Byte 224-271 	{channel config block} for Custom 2	48
Byte 272-319	{channel config block} for Custom 3	48

[bookmark: _Toc376267194]{channel config block}
Channel Config Block Format (48 bytes)	Length
Byte 0:	{config value} High Pass Setting 0	2
…	…	…
Byte 15:	{config value} High Pass Setting 7	2
Byte 16:	{config value} Low Pass Setting 0	2
…	…	…
Byte 31:	{config value} Low Pass Setting 7	2
Byte 32:	{config value} Gain Setting 0	2
…	…	…
Byte 47:	{config value} Gain Setting 7	2

[bookmark: _Toc376267195]{config value}
Each config values uses 2 bytes to encode a floating point value. To construct the final value, use the formula M * 10 ^ E where M is the mantissa encoded in byte 0 and E is the exponent encoded in byte 1.
	Byte	Mask	Description	# of Bits
	0	0x80	Reserved (must be 0)	1

	0	0x7F	mantissa (must be in range 1 – 99)	7
 (byte 0 =0 to 0x63)

	1	0x80	Reserved (must be 0)	1

	1	0x40	1 = negative exponent	1
			0 = positive exponent	

	1	0x3F	exponent (0 to 15)	6
 (byte1= 0 to 0x4F)

[bookmark: _Toc208641189][bookmark: _Toc376267196]
Revision History

0.1 First Revision

